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Abstract

Beauville [A. Beauville, Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables, Acta. Math.
164 (1990) 211–235] introduced an integrable Hamiltonian system whose general level set is isomorphic to the complement of the
theta divisor in the Jacobian of the spectral curve. This can be regarded as a generalization of the Mumford system [D. Mumford,
Tata Lectures on Theta II, Birkhäuser, 1984]. In this article, we construct a variant of Beauville’s system whose general level set is
isomorphic to the complement of the intersection of the translations of the theta divisor in the Jacobian. A suitable subsystem of
our system can be regarded as a generalization of the even Mumford system introduced by Vanhaecke [P. Vanhaecke, Linearising
two-dimensional integrable systems and the construction of action-angle variables, Math. Z. 211 (1992) 265–313; P. Vanhaecke,
Integrable systems in the realm of algebraic geometry, in: Lecture Notes in Mathematics, vol. 1638, 2001].
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Mumford system [13] is an integrable Hamiltonian system with the Lax matrix

A(x) =

(
v(x) w(x)
u(x) −v(x)

)
∈ M2(C[x]). (1.1)

Here u(x) and w(x) are monic of degree d − 1 and d, and v(x) is of degree ≤ d − 2 where d is a fixed positive
integer. The space of Lax matrices A(x) is endowed with d − 1 independent Hamiltonian vector fields, defining an
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algebraically completely integrable dynamical system. Its general level set is isomorphic to the complement of the
theta divisor in the Jacobian of the spectral curve of the Lax matrix, which is a hyperelliptic curve of genus d − 1.
See [4,5] for the definition of algebraically completely integrability.

A variant called the even Mumford system was introduced by Vanhaecke [20,21], whose Lax matrix has the same
form as (1.1) but the polynomial w(x) is monic of degree d + 1. This small difference gives rise to another type of
general level set, which is isomorphic to the complement of the union of two translates of the theta divisor in the
Jacobian of a hyperelliptic curve.

On the other hand, Beauville [6] introduced a generalization of the Mumford system. The Lax matrix is given by
A(x) ∈ Mr (C[x]) with a certain condition on the degree of each entry, where r ≥ 2 can be an arbitrary integer. He
constructed a completely integrable Hamiltonian system on the space of (the gauge equivalence classes of) the Lax
matrix A(x). Its general level set is isomorphic to the complement of the theta divisor in the Jacobian of the spectral
curve of the Lax matrix, which is not hyperelliptic in general. The Mumford system can be recovered as the case
r = 2 of Beauville’s system.

In this paper, we employ Beauville’s method to construct a system which generalizes the even Mumford system.
The Lax matrix is again given by A(x) ∈ Mr (C[x]) with arbitrary r ≥ 2, but we impose a condition, different from
Beauville’s, on the degree of each entry. (Hence the spectral curve is not hyperelliptic in general.) We construct a
completely integrable Hamiltonian system on the space of (the gauge equivalence classes of) the Lax matrix A(x). An
interesting feature of this system is that the general level set is isomorphic to the complement of the intersection of r
translates of the theta divisor (Theorems 2.8 and 3.11), which is not an affine variety. In addition, we construct a family
of subsystems, which provides an open (finite) covering of our system. The level set of each subsystem is isomorphic
to the complement of the union of r translates of the theta divisor in the Jacobian (Theorem 4.5). We also construct the
spaces of representatives of the subsystems, and explicitly describe the Hamiltonian vector fields (Proposition 4.11)
and the correspondence between the Lax matrix and the divisor (Proposition 4.9). The even Mumford system can be
recovered as the case r = 2 of a subsystem.

This paper is organized as follows: in Section 2 we study the Jacobian of the spectral curves for the Lax matrix.
Section 3 is devoted to the construction of Hamiltonian vector fields, and to the proof of the integrability. In Section 4
we introduce a family of subsystems and show that each of them is algebraically completely integrable. Further we
construct the spaces of representatives of the subsystems, and study the integrable structure. The proofs of many results
in Section 2 and Section 3 are given by a modification of the argument of Beauville [6]; nevertheless we include a
rather whole proof in the present paper for the sake of completeness, and for the importance of Beauville’s argument.

Remarks on related works

The theory of algebraic integrability on a Poisson manifold was considered by Adler and van Moerbeke [4,5].
Integrable systems described in terms of the Lax matrix with the (Laurent) polynomial entries were discussed by
several authors [16,8,3,21]. In [15,1], the Mumford system was generalized to other directions. A new treatment of
the Mumford system was developed in [18]. (See also [11].)

One of the reasons that make the Mumford system (and its variants) interesting is a connection to many models
arising from physics, such as the Neumann system [13], the Moser system [2], the Toda lattice [9], the Lotka–Volterra
lattice [9], and the Noumi–Yamada system [11]. We hope to find a physical model that realizes our system in a future
study.

2. Jacobian of the spectral curve

2.1. Intersection of translations of the theta divisor

Let C be a smooth projective irreducible curve of genus g (over C). For each integer k, we write J k for the space
of invertible sheaves of degree k, which we regard as a principal homogeneous space under the Jacobian J 0 of C . We
define the theta divisor Θ ⊂ J g−1 by

Θ = {L ∈ J g−1
| H0(C, L) 6= 0}

= {OC (E) | E is an effective divisor of degree g − 1}.
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For each point q ∈ C , we write Θq for the translation Θ + q = {L(q) = L ⊗OC (q) | L ∈ Θ} of Θ . This is a divisor
on J g . Let π : C → P1 be a finite morphism of degree r . We define a subvariety J ′ of J g by

J ′
= {L ∈ J g

| π∗L ∼= O ⊕ O(−1)⊕r−1
},

where we abbreviateOP1 to O . (In [6], J ′ is denoted by J (0,−1, . . . ,−1).) In this subsection, we prove the following.

Proposition 2.1. For any point a ∈ P1 unramified with respect to π , we have

J ′
= J g

\

(⋂
q∈C

Θq

)
= J g

\

 ⋂
q∈π−1(a)

Θq

 .
It is enough to show the following two lemmas:

Lemma 2.2. For any point q ∈ C, we have J g
\ Θq ⊂ J ′.

Lemma 2.3. For any point a ∈ P1 unramified with respect to π , we have

J ′
⊂ J g

\

 ⋂
q∈π−1(a)

Θq

 .
We need some preliminaries to prove them. Let L be an arbitrary invertible sheaf on C . We can write π∗L ∼=

⊕
r
i=1 O(di ) for some integers d1 ≤ d2 ≤ · · · ≤ dr such that deg L = g − 1 + r +

∑
di . We have

h0(C, L) = h0(P1, π∗L) =

∑
i

h0(P1, O(di )) =

∑
i∈{ j |d j ≥0}

(di + 1), (2.1)

h1(C, L) = h1(P1, π∗L) =

∑
i

h0(P1, O(−2 − di )) = −

∑
i∈{ j |d j ≤−2}

(di + 1), (2.2)

where we used the notation h∗(X, F) = dim H∗(X, F). This computation, together with the Riemann–Roch theorem,
implies the following two lemmas:

Lemma 2.4 (Cf. [6] 1.8). For L ∈ J g−1, the following conditions are equivalent:

(1) L ∈ J g−1
\ Θ, (2) h0(C, L) = 0, (3) h1(C, L) = 0, (4) π∗L ∼= O(−1)⊕r .

Lemma 2.5. For L ∈ J g , the following conditions are equivalent:

(1) L ∈ J ′ (i.e. π∗L ∼= O ⊕ O(−1)⊕r−1), (2) h0(C, L) = 1, (3) h1(C, L) = 0.

Proof of Lemma 2.2. For an invertible sheaf L on C , we have the exact sequence

0 → H0(C, L(−q)) → H0(C, L)
sq
→ C → H1(C, L(−q)) → H1(C, L) → 0 (2.3)

deduced from the short exact sequence 0 → L(−q) → L → Cq → 0. Now we assume L ∈ J g
\Θq . This amounts to

assuming L(−q) ∈ J g−1
\ Θ , and Lemma 2.4 shows h0(C, L(−q)) = h1(C, L(−q)) = 0. Then the exact sequence

(2.3) implies h0(C, L) = 1, which means L ∈ J ′ by Lemma 2.5. This completes the proof. �

Proof of Lemma 2.3. We take L ∈ J ′. By Lemma 2.5, we have h0(C, L) = 1. For q ∈ C , we regard H0(C, L(−q))
as a subspace of H0(C, L) by the injection appearing in Eq. (2.3).

Now we assume L ∈ ∩q∈π−1(a)Θq . This amounts to assuming L(−q) ∈ Θ for any q ∈ π−1(a). Then
Lemma 2.4 shows that the inclusion H0(C, L(−q)) → H0(C, L) is bijective for any q ∈ π−1(a). In other words,
any non-zero global section of L must have a zero at q for any q ∈ π−1(a). Therefore H0(C, L(−π∗a)) =
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∩q∈π−1(a) H0(C, L(−q)) is isomorphic to H0(C, L), and we have h0(C, L(−π∗a)) = h0(C, L) = 1. However,
by the projection formula (and the assumption L ∈ J ′), we have

h0(C, L(−π∗a)) = h0(P1, π∗L ⊗ O(−1)) = h0(P1, O(−1)⊕ O(−2)⊕r−1) = 0.

This is a contradiction, and the proof is done. �

2.2. Jacobian of the spectral curve

We fix natural numbers r and d . Let us consider a polynomial of the form

P(x, y) = yr
+ s1(x)y

r−1
+ · · · + sr (x)

with si (x) ∈ C[x] is of degree ≤ di . We regard x as a fixed coordinate function on P1, so that the equation P(x, y) = 0
defines a finite map π : CP → P1 of degree r , where CP is the spectral curve of P . One can define CP to be the
closure of the affine curve defined by P(x, y) = 0 in the Hirzebruch surface of degree d. More explicitly, CP can
be described by gluing two plane affine curves defined by the polynomials P(x, y) and zdr P(z−1, z−dw) ∈ C[z, w]

by the relation x = z−1, y = z−dw. The aim of this subsection is to give an explicit representation (the matrix
realization) of the variety J ′ considered in Section 2.1 assuming C = CP is smooth (hence irreducible). We remark
that, under this assumption, the genus of CP is g =

1
2 (r − 1)(rd − 2).

We introduce some notations:

Sk(x) = {s(x) ∈ C[x] | deg s(x) ≤ k},

M(r, d) =

{
A(x) ∈ Mr (C[x])

∣∣∣∣ A(x)11 ∈ Sd(x), A(x)1 j ∈ Sd+1(x),
A(x)i1 ∈ Sd−1(x), A(x)i j ∈ Sd(x),

(2 ≤ i, j ≤ r)

}
,

V (r, d) = {P(x, y) = yr
+ s1(x)y

r−1
+ · · · + sr (x) ∈ C[x, y] | si (x) ∈ Sdi (x)},

Gr =

{
g(x) =

(
1 t Eb1 x +

t Eb0
0 B

) ∣∣∣∣ B ∈ GLr−1(C), Eb1, Eb0 ∈ Cr−1
}
.

In this article we denote column vectors using a notation such as Eb. We write the adjoint action of Gr on M(r, d) as

g(A(x)) = g(x)−1 A(x)g(x) for g(x) ∈ Gr , A(x) ∈ M(r, d). (2.4)

Further we introduce a map:

ψ : M(r, d) → V (r, d); A(x) 7→ det(yIr − A(x)),

and define subsets of V (r, d) or M(r, d) as follows:

MP = ψ−1(P(x, y)),

Vir (r, d) = {P(x, y) ∈ V (r, d) | CP is irreducible},

Vsm(r, d) = {P(x, y) ∈ Vir (r, d) | CP is smooth},

Mir (r, d) = ψ−1(Vir (r, d)),

Msm(r, d) = ψ−1(Vsm(r, d)).

Then we have V (r, d) ⊃ Vir (r, d) ⊃ Vsm(r, d) and M(r, d) ⊃ Mir (r, d) ⊃ Msm(r, d). Note that each MP ,Mir (r, d)
and Msm(r, d) is stable with respect to the action of Gr (2.4). For later use we introduce a lemma:

Lemma 2.6. The action (2.4) of Gr on Mir (r, d) is free.

Proof. We have to show that the stabilizer is trivial for all A(x) ∈ Mir (r, d). Since any element of Gr has an
eigenvalue 1, this follows from the following lemma on elementary linear algebra: �

Lemma 2.7. Let K = C(x) be the field of rational functions over C. Let r ∈ N, and suppose A, B ∈ Mr (K )
satisfies the following conditions: (1) AB = B A, (2) B is not a scalar matrix, (3) B has an eigenvalue b in K . Then
det(yIr − A) ∈ K [y] is a reducible polynomial in y.
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Proof. This follows at once by noting that the eigenspace of B with respect to b is a non-trivial, proper subspace of
K ⊕r stable under A. �

We define a projection map η:

η : Mir (r, d) → Mir (r, d)/Gr . (2.5)

In the following, we respectively write JP and J ′

P for the variety J and J ′ defined in Section 2.1 associated to
(CP , π). For k ∈ Z and an invertible sheaf L on CP , we use a notation L(k) = L ⊗ π∗O(k). The main result in this
subsection is the following:

Theorem 2.8 (Cf. [6] 1.4). Let P(x, y) ∈ Vsm(r, d), and let π : CP → P1 be the finite map defined by x. Then, MP
is a principal fiber bundle under Gr , and the base space MP/Gr is isomorphic to J ′

P .

Proof. The first part follows from Lemma 2.6. We construct a surjective map MP → J ′

P and show that each fiber
is a principal homogeneous space under Gr . We remark that a matrix A(x) ∈ M(r, d) defines an O-linear map
O ⊕ O(−1)⊕r−1

→ O(d)⊕ O(d − 1)⊕r−1. (Here we consider O(d) = O(d · ∞).) Due to [7] (see also [6] 1.4), the
set

{(L , v) | L ∈ J ′

P , v : O ⊕ O(−1)⊕r−1 ∼= π∗L} (2.6)

is in one-to-one correspondence with MP in such a way that the diagram

O ⊕ O(−1)⊕r−1 A(x)
−→ O(d)⊕ O(d − 1)⊕r−1

v
↓

v(d)
↓

π∗L
π∗ y
−→ π∗L(d)

(2.7)

commutes whenever (L , v) corresponds to A(x) ∈ MP . (Note that A(x) must be in MP because of the relation
P(x, y) = 0 in OC .) By composing this correspondence with the ‘forgetful’ map (L , v) 7→ L , we obtain the desired
surjection MP → J ′

P . The fiber of this map over L ∈ J ′

P is the set of isomorphisms O ⊕ O(−1)⊕r−1 ∼= π∗L which is
a principal homogeneous space under Gr where the action of g(x) ∈ Gr is given by v 7→ g(x)−1

◦ v ◦ g(x). (Here we
regard g(x) as an automorphism on O ⊕ O(−1)⊕r−1 as well as O(d)⊕ O(d − 1)⊕r−1.) On the set MP , this action
corresponds to the conjugation. This completes the proof. �

Remark 2.9. Given an invertible sheaf L ∈ J ′

P , a corresponding matrix A(x) ∈ MP is constructed in the following
way. We have to choose an isomorphism v : O ⊕ O(−1)⊕r−1

→ π∗L . This amounts to a choice of a basis
of H0(CP , L(1)) of the form ( f0, f1, . . . , fr−1, x f0) with f0 ∈ H0(CP , L). The multiplication by y defines
elements y f0 ∈ H0(CP , L(d)) = ( f0Sd(x)) ⊕ (⊕r−1

j=1 f j Sd−1(x)) and y f1, . . . , y fr−1 ∈ H0(C, L(d + 1)) =

( f0Sd+1(x))⊕ (⊕r−1
j=1 f j Sd(x)). Now the matrix A(x) is characterized by

y( f0, f1, . . . , fr−1) = ( f0, f1, . . . , fr−1)A(x).

In other words, the set MP is in one-to-one correspondence with the set of pairs (L , v) where L ∈ J ′

P and

v : S1(x)⊕ C⊕r−1 ∼=
−→ H0(CP , L(1)). A matrix A(x) ∈ MP corresponds to (L , v) iff

S1(x)⊕ C⊕r−1
v
∼=

−→ H0(CP , L(1))
↓A(x) ↓y

Sd+1(x)⊕ Sd(x)
⊕r−1

v(d)
∼=

−→ H0(CP , L(d + 1))

(2.8)

commutes.

2.3. Characterization of a translation of the theta divisor

We fix P ∈ Vsm(r, d). Let A(x) ∈ MP , and let L ∈ J ′

P be the corresponding invertible sheaf. We take a ∈ P1
\{∞}

unramified with respect to π , so that π−1(a) = {q1, . . . , qr } consists of r distinct points. Then y(q1), . . . , y(qr ) are
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the distinct eigenvalues of the matrix A(a). Let ρqi : Cr
→ C be the projection to the eigenspace associated with

the eigenvalue y(qi ). For each i = 1, . . . , r , we write sqi : H0(CP , L) → C for the map in the exact sequence (2.3)
applied to q = qi . In this subsection, we show the following.

Proposition 2.10. For each i = 1, . . . , r , the following conditions are equivalent:

(1) ρqi (1, 0, . . . , 0) 6= 0, (2) Im(sqi ) 6= 0, (3) L ∈ J ′

P \ Θqi .

Proof. The equivalence between (2) and (3) is a consequence of Lemma 2.4 and the exact sequence (2.3), as is shown
in the same way as Lemma 2.2. We show the equivalence between (1) and (2). We recall that the map sqi is induced
by the map s̃qi in the following short exact sequence of sheaves on CP

0 → L(−qi ) −→ L
s̃qi

−→ Cqi → 0.

We then have a commutative diagram

π∗L
⊕s̃qi
−→ ⊕

r
i=1 π∗Cqi

π∗ y
↓ ↓

⊕i y(qi )

π∗L(d)
⊕s̃qi (d)
−→ ⊕

r
i=1 π∗Cqi ,

where the right vertical map is defined as the multiplication by y(qi ) on the i-th component. Let v : O⊕O(−1)⊕r−1 ∼=

π∗L be the isomorphism corresponding to A(x). The pull-back of this diagram by v is written as

O ⊕ O(−1)⊕r−1 l1
−→ C⊕r

a
↓

A(x)
↓

A(a)

O(d)⊕ O(d − 1)⊕r−1 l2
−→ C⊕r

a ,

where l1 and l2 are defined simply by the direct sum of O(k) → Ca for k ∈ {0,−1, d, d − 1}. This means that
π∗Cqi maps to the eigenspace of y(qi ) in Cr under the isomorphism va : Cr

a
∼= ⊕

r
i=1 π∗Cqi . The image of the map

H0(P1, O ⊕ O(−1)⊕r−1) → Cr induced by l1 is generated by (1, 0, . . . , 0). Therefore the image of sqi is non-trivial
if and only if ρqi (1, 0, . . . , 0) 6= 0. This shows the proposition. �

Remark 2.11. Let us consider the case a = ∞ (still assuming that π is unramified at a = ∞). The statement of
Proposition 2.10 remains true if we replace A(a) by A(∞), where the (i, j)-component of A(∞) is the coefficient
of the leading term of A(x)i j . Note that, if we set w = y/xd , then w(q1), . . . , w(qr ) are the distinct eigenvalues of
A(∞).

3. Integrable system

3.1. Vector fields

We identify the tangent space TA(x)M(r, d) at A(x) ∈ M(r, d) with the affine space M(r, d) and write vector fields

on M(r, d) in the matrix form. For a positive integer p and a ∈ C, we define a vector field Υ (p)
a on M(r, d) by the

Lax form

Υ (p)
a (A(x)) :=

1
x − a

[A(a)p, A(x)]. (3.1)

If we let a ∈ C vary, Υ (p)
a can be written as a polynomial in a of degree pd. For j = 0, . . . , pd, we define a vector

field Y (p)j to be the coefficient of a j in this polynomial, viz.

Υ (p)
a =

pd∑
j=0

a j Y (p)j . (3.2)
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Remark 3.1. For each a ∈ C, the sets of the vector fields {Υ (p)
a |1 ≤ p ≤ r − 1} and {Υ (p)

a |1 ≤ p} generate the
same vector space by Hamilton–Cayley’s formula for A(a). Further for each p ≥ 1, the sets {Υ (p)

a |a ∈ C} and
{Y (p)j |0 ≤ j ≤ pd} generate the same vector space by Vandermond’s determinant formula.

Lemma 3.2. The projection map η (2.5) induces the equality η∗Υ
(p)
a (A(x)) = η∗Υ

(p)
a (g(A(x))) in

Tη(A(x))(Mir (r, d)/Gr ) for all g(x) ∈ Gr and A(x) ∈ Mir (r, d).

Proof. A vector field X on Mir (r, d) satisfies η∗ X (A(x)) = η∗ X (g(A(x))) in Tη(A(x))(Mir (r, d)/Gr ) if and
only if X (A(x)) − g∗ X (A(x)) is tangent to Gr -orbits for any g(x) ∈ Gr . A direct calculation shows that
Υ (p)

a (A(x))− g∗Υ
(p)
a (A(x)) is a linear combination of the vector fields of Lie Gr :

X E (A(x)) = [E, A(x)], for E = Ei j , E1 j , E ′

1 j (2 ≤ i, j ≤ r). (3.3)

Here Ei j is given by (Ei j )kl = δikδ jl , and E ′

1 j = x E1 j . Thus the claim follows. �

Corollary 3.3. For each a ∈ C, 1 ≤ p ≤ r − 1, 0 ≤ j ≤ pd, we have well-defined vector fields Υ̃ (p)
a and Ỹ (p)j on

Mir (r, d)/Gr which satisfies at [A(x)] = η(A(x))

Υ̃ (p)
a ([A(x)]) = η∗Υ

(p)
a (A(x)), Ỹ (p)j ([A(x)]) = η∗Y (p)j (A(x)).

We collect some properties of Ỹ (p)j .

Lemma 3.4. (1) For each P ∈ Vir (r, d), the vector field Y (p)j is tangent to MP and Ỹ (p)j is tangent to MP/Gr .

(2) For any i and j , the vector fields Y (p)i and Y (q)j commute. So do Ỹ (p)i and Ỹ (q)j .

(3) We have Ỹ (p)pd = Ỹ (p)pd−1 = 0. The dimension of the vector space generated by Ỹ (p)j with 1 ≤ p ≤ r − 1, 0 ≤ j ≤

pd − 2 is at most g.

Proof. 1: A vector field on M(r, d) is equivalently given as a derivation on the affine ring of M(r, d). We write
tk(x) = trA(x)k and let sk(x) be the coefficients of yr−k in det(yIr − A(x)) for 1 ≤ k ≤ r . By Newton’s formula,
each sk(x) is written as a function in Q[t1(x), . . . , tk(x)]. Since Υ (p)

a is given by the Lax form (3.1), the associated
derivation satisfies Υ (p)

a (tk(x)) = 0. Thus we see Υ (p)
a (sk(x)) = 0, and the claim follows.

2: This is shown by a direct computation.
3: Since Y (p)pd and Y (p)pd−1 are tangent to Gr -orbits, Ỹ (p)pd and Ỹ (p)pd−1 vanish. Therefore the space in question is generated

by Ỹ (p)j with 1 ≤ p ≤ r −1, 0 ≤ j ≤ pd −2. The number of the members is
∑r−1

p=1(pd −1) =
1
2 (r −1)(dr −2) = g.

�

3.2. Translation invariance

We have seen that MP/Gr is isomorphic to an open subset J ′

P of J g
P for P(x, y) ∈ Vsm(r, d) (Theorem 2.8).

We regard the restriction of the vector fields Υ̃ (p)
a and Ỹ (p)j as vector fields on J ′

P . In this subsection, we show that

Υ̃ (p)
a |MP/Gr and Ỹ (p)j |MP/Gr are translation invariant under the action of the Jacobian J 0

P on J g
P .

The space of translation invariant (holomorphic) vector fields on JP is canonically dual to H0(CP ,Ω1
CP
). Let C0

P

be the set of points q ∈ CP such that π : CP → P1 is unramified at q and π(q) 6= ∞. For q ∈ C0
P , we write Xq for the

vector field corresponding to the linear form ω 7→
ω

d(x−x(q)) (q) on H0(CP ,Ω1
CP
). (Recall we have fixed a coordinate

x on P1.) Equivalently, Xq is characterized as follows: the short exact sequence 0 → OCP → OCP (q) → TqCP → 0
induces the connecting homomorphism

TqCP → H1(CP ,OCP ).

The image of the vector ∂
∂(x−x(q)) ∈ TqCP in H1(CP ,OCP ) corresponds to Xq under the Serre duality.
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Remark 3.5. If Q is an infinite subset of C0
P , the vectors Xq (q ∈ Q) generate the full space of translation invariant

vector fields. Indeed, this is equivalent to the triviality of the cokernel of⊕
q∈Q

TqCP → H1(CP ,OCP ),

which is dual to the kernel of

H0(CP ,Ω1
CP
) →

∏
q∈Q

T ∗
q CP ;

but this kernel is trivial by the simple fact that any non-zero differential form has only finitely many zeros.

The main result in this subsection is the following.

Theorem 3.6 (Cf. [6] 2.2). Let a ∈ P1 be a point such that π : CP → P1 is unramified over a, and let π−1(a) =

{q1, . . . , qr }. Then, for each p ≥ 1, the vector field Υ̃ (p)
a |MP/Gr coincides with y(q1)

p Xq1 + · · · + y(qr )
p Xqr .

Proof. Let A(x) ∈ MP . Then A(a) has r distinct eigenvalues y(q1), . . . , y(qr ). For each q ∈ π−1(a), we write
Πq ∈ Mr (C) for the projector to the eigenspace of y(q), and we define a vector field Ȧq on MP by

Ȧq(A(x)) =
1

x − a
[Πq , A(x)].

Since Υ (p)
a |MP/Gr = y(q1)

p Ȧq1 + · · · + y(qr )
p Ȧqr , the theorem is reduced to the following lemma. �

Lemma 3.7. We have η∗(Υ
(p)
a )(A(x)) = Xq(η(A(x))) for any q ∈ π−1(a), A(x) ∈ MP .

Proof. In this proof, we omit to indicate P and write C = CP , J = JP etc. Let Cε be the scheme whose underlying
topological space is C but with the structure sheaf OC [ε], ε2

= 0. For L ∈ J , the tangent space TL J is in one-to-one
correspondence with the set of invertible sheaves on Cε , which reduce to L modulo ε. If q ∈ C0 and L ∈ J ′, the
vector Xq(L) corresponding to the invertible sheaf Lεq is given by

H0(U, Lεq) =

{
s + εt

∣∣∣∣ s ∈ H0(U, L), t ∈ H0(U, L(q)),
s/(x − a)+ t is holomorphic at q

}
for an open set U of C (cf. [6] 2.2).

Recall that the set MP is in one-to-one correspondence with the set of pairs (L , v) where L ∈ J ′ and v is an

isomorphism H0(C, L(1))
∼=

−→ S1(x) ⊕ C⊕r−1 (cf. Remark 2.9). If A(x) ∈ MP corresponds to (L , v), the tangent
space TA(x)MP is in one-to-one correspondence with the pairs of (Lε, vε) where Lε is an invertible sheaf on Cε which
reduces to L modulo ε, and vε is an isomorphism (S1(x)⊕C⊕r−1)⊗C[ε] ∼= H0(Cε, Lε(1)) of C[ε]-modules, which
reduces to v modulo ε. A vector Ȧ(x) ∈ TA(x)MP ⊂ TA(x)Msm(r, d) ∼= M(r, d) corresponds to a pair (Lε, vε) iff

(Sε1 ⊕ C[ε]⊕r−1)

vε

∼=
−→ H0(Cε, Lε(1))

A(x)+ε Ȧ(x)
↓ ↓y

(Sεd+1 ⊕ Sε⊕r−1
d )

vε(d)
∼=

−→ H0(Cε, Lε(d + 1))

(3.4)

commutes. Here we denote Sεk = Sk(x)⊗ C[ε].

Now let q ∈ C0. Let A(x) ∈ MP and let (L , v) be the corresponding pair. Recall that Lεq is the invertible
sheaf on Cε corresponding to Xq(L). In order to complete the proof, we are going to construct an isomorphism
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vεq : Sε1 ⊕ C[ε]⊕r−1 ∼=
−→ H0(Cε, Lεq(1)) such that vεq reduces to v modulo ε, and that the diagram

(Sε1 ⊕ C[ε]⊕r−1)

vεq
∼=

−→ H0(Cε, Lεq(1))

A(x)+ε Ȧq (x)
↓ ↓y

(Sεd+1 ⊕ Sε⊕r−1
d )

v
ε(d)
q
∼=

−→ H0(Cε, Lεq(d + 1))

(3.5)

commutes.
Let a = π(q) and write π−1(a) = {q1 = q, q2, . . . , qr }. There exists a section si ∈ H0(C, L(1)) which does not

vanish at qi but vanish at q j for j 6= i . However, such an si is not unique. We specify a choice of si as follows. We
write f0, f1, . . . , fr−1 ∈ H0(C, L(1)) for the images of (1, (0, . . . , 0)), (0, (1, 0, . . . , 0)), . . . , (0, (0, . . . , 1)) under
the isomorphism v. Then ((x − a) f0, f0, f1, . . . , fr−1) is a C-basis of H0(C, L(1)) (and (x − a) f0 is a C-base of
H0(C, L)). On the other hand, ((x − a) f0, s1, . . . , sr ) is also a basis of H0(C, L(1)). Thus we can write

((x − a) f0, s1, . . . , sr ) = ((x − a) f0, f0, f1, . . . , fr−1) · Λ̃,

Λ̃ =

(
1 ∗

0 Λ

)
, Λ =

(
Eλ1, . . . , Eλr

)
∈ GLr (C).

We can choose s1, . . . , sr so that Λ̃ =

(
1 0
0 Λ

)
. This condition determines si up to a multiplication by a non-zero

scalar. By definition we have ((x − a) f0/si )(qi ) = 0 and s j/si (qi ) = δi, j . Hence, if we set f :=
(
( f j/si )(qi )

)
i j , then

f · Λ = Ir .
Now we define vεq to be the composition of

σ : H0(C, L(1))⊕ H0(C, L(1))ε
∼=

−→ H0(Cε, Lεq(1))

(t1, t2ε) 7→ t1 +

(
t2 −

t1
s1
(q)

s1

x − a

)
ε

(3.6)

with an isomorphism

v ⊗ idC[ε]: (S
ε
1 ⊕ C[ε]r−1)

∼=
−→ H0(C, L(1))⊗ C[ε] = H0(C, L(1))⊕ H0(C, L(1))ε.

The change of s1 by a scalar multiplication does not affect the definition of this map.
It is immediate that vεq mod ε is vq . We check the commutativity of (3.5). We write Ef = ( f0, . . . , fr−1) and

Ef /si (q) = ( f0/si (q), . . . , fr−1/si (q)). Then the map (3.6) can be written in terms of matrices

σ( Ef , ε Ėf ) = Ef + ε

(
Ėf −

1
x − a

Ef · Π
)
, Π = Eλ1 · Ef /s1(q) ∈ Mr (C).

Therefore, the commutativity of (3.5) means

Ef A(x)

(
I −

ε

x − a
Π
)

= Ef

(
I −

ε

x − a
Π
)
(A(x)+ ε Ȧq(x)),

which follows if we have Π = Πq1 . To show the last assertion, we note that the equation ysi = Ef A(x)Eλi holds in
H0(C, L(d + 1)). Thus we have fA(a)Λ = diag(y(q1), . . . , y(qr )). Since f = Λ−1, this means Eλi is an eigenvector
of A(a) belonging to the eigenvalue y(qi ). In particular, Π = Eλ1 · Ef /s1(q1) is the projector Πq1 . This completes the
proof. �

By Lemma 3.4(3) and Remark 3.5, we obtain

Corollary 3.8. The space of vector fields on Mir (r, d)/Gr generated by Ỹ (p)j (1 ≤ p ≤ r − 1, 0 ≤ j ≤ pd − 2) is
g-dimensional.
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3.3. Hamiltonian structure

In this subsection, we show that the vector fields Υ̃ (p)
a on Mir (r, d)/Gr are Hamiltonian, following the method

of [6] Section 5 (see also [12] Section 15, [14]).
Let a1, . . . , ad+2 be distinct points in C, and ϕ : M(r, d) → Mr (C)d+2 be a map defined by

ϕ(A(x)) = (c1 A(a1), . . . , cd+2 A(ad+2)). (3.7)

Here cα = Pα(aα)−1 with Pα(x) =
∏
ρ 6=α(x − aρ). This map is injective, and the preimage of Y =

(Y1, Y2, . . . , Yd+2) ∈ ϕ(M(r, d)) is obtained as ϕ−1(Y) =
∑d+2
α=1 YαPα(x) by Lagrange’s interpolation formula.

We set the coordinate on Mr (C)d+2 by using yαi j (1 ≤ α ≤ d + 2, 1 ≤ i, j ≤ r) as Yα = (yαi j )1≤i, j≤r ∈ Mr (C)
and Y = (Y1, Y2, . . . , Yd+2) ∈ Mr (C)d+2. We define the Gr -action on Mr (C)d+2 by

g(x) : (Yα)1≤α≤d+2 7→ (g(aα)
−1Yαg(aα))1≤α≤d+2, (3.8)

which is compatible with the Gr -action on M(r, d). We equip Mr (C)d+2 with the Poisson bracket which comes from
that of glr (C) ∼= Mr (C):

{yαi j , yβkl} = δα,β(δ j,k yαil − δl,i yαk j ). (3.9)

The associated Casimir functions are tk,α = tr(Y k
α ) for 1 ≤ α ≤ d + 2, k ∈ Z>0.

For E ∈ Lie Gr , we introduce the Hamiltonian functions HE on Mr (C)d+2:

HE1 j =

∑
α

yαj1, HE ′

1 j
=

∑
α

aα yαj1, HEi j =

∑
α

yαj i , for 2 ≤ i, j ≤ r.

These satisfy H[E,E ′] = {HE , HE ′} for any E, E ′
∈ Lie Gr . Each HE generates a vector field on Mr (C)d+2

compatible with X E (3.3) on M(r, d) via the map ϕ. The associated moment map µ : Mr (C)d+2
→ (Lie Gr )

∗

is the unique map which satisfies HE (Y) = 〈µ(Y), E〉 for all Y ∈ Mr (C)d+2 and E ∈ Lie Gr . Here 〈 , 〉 is the
pairing between (Lie Gr )

∗ and Lie Gr .

Lemma 3.9. (1) The image of ϕ is an affine subvariety of Mr (C)d+2 determined as the intersection of µ−1(0) and
t−1
1 (0), where t1 =

∑
α t1,α .

(2) The Poisson structure (3.9) induces the Poisson structure on ϕ(Mir (r, d))/Gr , and hence on Mir (r, d)/Gr via ϕ.

Proof. 1: The image ϕ(M(r, d)) of ϕ is a subvariety of Mr (C)d+2 determined by the following conditions:

d+2∑
α=1

yα11 = 0,

d+2∑
α=1

yαj1 = 0,
d+2∑
α=1

aα yαj1 = 0,
d+2∑
α=1

yαj i = 0, for 2 ≤ i, j ≤ r.

(3.10)

We see that the last three conditions are nothing but the defining equations for µ−1(0) (i.e. the zero of the Hamiltonian
functions HE ). Summing up the first one and the last one for 2 ≤ i = j ≤ r , we obtain the defining equation for
t−1
1 (0).

2: Recall that the action of Gr on ϕ(Mir (r, d)) ⊂ Mr (C)d+2
0 is free, and that ϕ(Mir (r, d)) ⊂ µ−1(0) ∩ t−1

1 (0). Then
the Poisson structure (3.9) on Mr (C)d+2 induces the Poisson structure on the quotient space ϕ(Mir (r, d))/Gr . This
is passed to the Poisson structure on Mir (r, d)/Gr by ϕ. �

The following lemma is shown by a direct computation.

Lemma 3.10. The vector fields (p + 1)
∏d+2
α=1(a − aα)Υ̃

(p)
a on Mir (r, d)/Gr is Hamiltonian. They are generated by

the Gr -invariant function trA(a)p+1 on Mir (r, d) with respect to the Poisson bracket of Lemma 3.9(2).

Summarizing Theorems 2.8 and 3.6 and Lemma 3.10, we conclude that
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Theorem 3.11 (Cf. [1] 5.3). The Hamiltonian system ψ |Mir (r,d)/Gr : Mir (r, d)/Gr → V (r, d) is completely
integrable. In particular, the general level set is isomorphic to an open subvariety of a Jacobian. More precisely,
we have MP/Gr ∼= J ′

P if P ∈ Vsm(r, d).

4. Generalization of even Mumford system

4.1. Matrix realization of the affine Jacobian

In this section, we construct a family of subsystems of Mir (r, d)/Gr whose general level set is isomorphic to the
complement of the union of r translates of the theta divisor in the Jacobian.

In the following, we write A(x) ∈ M(r, d) as

A(x) =

(
v(x) t

Ew(x)
Eu(x) T (x)

)
, (4.1)

where v(x) ∈ Sd(x), Eu(x) ∈ Sd−1(x)⊕r−1, Ew(x) ∈ Sd+1(x)⊕r−1 and T (x) ∈ Mr−1(Sd(x)). The coefficients of xk

(k ≥ 0) in v(x), Ew(x), Eu(x) and T (x) will be denoted by vk, Ewk, Euk and Tk . For A(x) ∈ M(r, d), we define

D(A(x); x) = (Eu(x), T (x)Eu(x), . . . , T (x)r−2
Eu(x)) ∈ Mr−1(C[x]), (4.2)

D(A(x); ∞) = (Eud−1, Td Eud−1, . . . , Td
r−2

Eud−1) ∈ Mr−1(C). (4.3)

Note that det D(A(x); x) is a polynomial in x of degree at most g, and that the coefficients of xg is det D(A(x); ∞).
For each c ∈ P1, we define the subspacesMc,Mir

c andMc,P of M(r, d):

Mc = {A(x) ∈ M(r, d) | det D(A(x); c) 6= 0},

Mir
c =Mc ∩ Mir (r, d),

Mc,P =Mc ∩ MP .

Lemma 4.1. 1. The subset Mc is invariant under the action of Gr on M(r, d).
2. The action of Gr onMc is free.
3. Let c1, . . . , cg+1 be distinct points on P1. Then we have

Mir (r, d) ⊂

g+1⋃
i=1

Mci =

⋃
c∈P1

Mc ⊂ M(r, d).

Proof. Let A(x) ∈Mc and g(x) =

(
1 t Eb(x)
E0 B

)
∈ Gr .

1: This follows from the relation det D(g(A(x)); x) = det B−1
· det D(A(x); x).

2: A computation

g(A(x)) =

(
v −

t Eb ·B−1
Eu t

Ew ·B + v t Eb −
t Eb B−1

Eu t Eb −
t Eb B−1T B

B−1
Eu B−1

Eu t Eb +B−1T B

)
(4.4)

shows that the condition g(A(x)) = A(x) implies B D(A(x); x) = D(A(x); x) and t EbD(A(x); x) = 0. If we further
assume A(x) ∈Mc, then we obtain B = Ir−1 and Eb = 0.
3: The equality in the middle holds since degx D(A(x); x) ≤ g. We show the left inclusion. Assume A(x) 6∈ Mc for
all c ∈ P1. Then D(A(x); x) is identically zero. Hence we have

det
((

1
E0

)
, A(x)

(
1
E0

)
, . . . , A(x)r−1

(
1
E0

))
= 0,

which implies that the column vectors span a proper subspace in C(x)⊕r invariant under A(x). Therefore the
characteristic polynomial of A(x) is reducible if A(x) 6∈Mc. �
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This lemma implies that Mir
c /Gr is a subsystem of the completely integrable system Mir (r, d)/Gr . The general

level set is described in the following:

Proposition 4.2. Let c ∈ P1 and P ∈ Vsm(r, d) such that π : CP → P1 is unramified over c. Then the level set

Mc,P/Gr of Mir
c /Gr is isomorphic to JP \

(⋃
q∈π−1(c)Θq

)
.

Proof. Let A(x) ∈ MP and let L ∈ J ′

P be the image of A(x) under the map MP → MP/Gr ∼= J ′

P . According to
Proposition 2.10 and Theorem 2.8, L is in ∪q∈π−1(c)Θq if and only if the first entry of any eigenvector of t A(c) is
nonzero. Thus the following lemma on linear algebra completes the proof. �

Lemma 4.3. Let C ∈ Mr (C) be a semi-simple matrix. Writing t C =

(
∗ ∗

Ec C0

)
with C0 ∈ Mr−1(C) and Ec ∈ Cr−1, we

set D =
t (Ec,C0Ec, . . . ,C0

r−2
Ec) ∈ Mr−1(C). We write W for the subspace of Cr generated by all eigenvectors of C

whose first entries are zero. Then we have dim W = r − 1 − rankD.

Proof. Define i : Cr−1
→ Cr by setting the first entry to be zero, and let V0 = i(Cr−1). Let W0 = {i( Ew) ∈ V0 |

Ew ∈ Cr−1, D Ew = 0}. Since dim W0 = r − 1 − rankD, it is enough to show W = W0. The lemma below shows that
W is the maximal subspace of V0 which satisfies the condition CW ⊂ W . Since CW0 ⊂ W0, we have W0 ⊂ W . To
show the converse, we take Ew ∈ W . Since CW ⊂ W , we have Ck

Ew ∈ W (⊂ V0) for all k ≥ 0. By writing down the
condition Ck

Ew ∈ V0 for k = 0, 1, . . ., we see Ew ∈ W0. This shows W ⊂ W0 and we have finished. �

Lemma 4.4. Let f : V → V be a semi-simple endomorphism of a finite dimensional C-vector space. For a subspace
V ′ of V , we write Ev(V ′) for the set of eigenvectors of f in V ′. Let W be a subspace of V . Let Wst be the maximal
subspace in W which satisfies f (Wst ) ⊂ Wst , and let Weig be the subspace of V generated by Ev(W ). Then we have
Wst = Weig.

Proof. We have Weig ⊂ Wst because f (Weig) ⊂ Weig. It holds that

Wst
(1)
= 〈Ev(Wst )〉

(2)
⊂ 〈Ev(W )〉

(3)
= Weig.

Here (1), (2) and (3) follows by the semi-simplicity of f , by Ev(Wst ) ⊂ Ev(W ) and by definition, respectively. �

We summarize our main result.

Theorem 4.5. The Hamiltonian system ψ |Mir
c /Gr

: Mir
c /Gr → V (r, d) is algebraically completely integrable. In

particular the general level set is isomorphic to an affine subvariety of a Jacobian. More precisely, if P ∈ Vsm(r, d)
and if π : CP → P1 is unramified over c, we haveMc,P/Gr ∼= J g

P \ (
⋃

q∈π−1(c)Θq).

Remark 4.6. The Hamiltonian vector fields Υ̃ (p)
a are defined on Mc/Gr (not only on Mir

c /Gr ) because of
Lemma 4.1-2.

4.2. Space of representatives

We introduce a space of representatives ofMc/Gr . For Beauville’s system, Donagi and Markman [8] constructed
such a space of representatives.

We define subspaces Sc of M(r, d) for c ∈ P1 as follows:

Sc =

{
A(x) ∈ M(r, d)| A(x) =

(
v(0) t

Ew
(0)

Eν τ

)
+ (x − c)

(
v(1) t

Ew
(1)

Eu(1) T (1)

)

+ higher terms in (x − c), T (1) ∈ T
}
, for c ∈ C,

S∞ =

{
A(x) ∈ M(r, d)| A(x) =

(
0 t

Ewd+1
E0 O

)
xd+1

+

(
vd

t
Ewd

E0 τ

)
xd

+

(
vd−1

t
Ewd−1

Eν Td−1

)
xd−1

+ lower terms in x, Td−1 ∈ T
}
, for c = ∞.
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Here τ, Eν and the set T is as follows:

τ =


0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

 ∈ Mr−1(C), Eν =


1
0
...

0

 ∈ Cr−1,

T = {ρ ∈ Mr−1(C) | ρ1 j = 0 for j = 1, . . . , r − 1}.

(4.5)

By definition, Sc ⊂Mc since det D(A(x); x) = 1 for all A(x) ∈ Sc.

Proposition 4.7. For c ∈ P1, the map given by Sc × Gr → Mc; (S(x), g(x)) 7→ g(S(x)) is an isomorphism. Thus
the space Sc is a set of representatives of Mc/Gr .

This is a consequence of the following lemma:

Lemma 4.8. Let c ∈ P1.

(1) If A(x) ∈Mc, then there exists g(x) ∈ Gr such that g(A(x)) ∈ Sc.
(2) If g(S(x)) = S̃(x) with S(x), S̃(x) ∈ Sc and g(x) ∈ Gr , then we have g(x) = Ir .

Proof. 1: We give a proof for c 6= ∞. (The case of c = ∞ can be shown in a similar way.) Define B ∈ Mr−1(C) by

B =
(
Eu(c), ζ1 Eu(c), . . . , ζr−2 Eu(c)

)
.

Here ζi (1 ≤ i ≤ r − 2) ∈ Mr−1(C) are defined by

ζi = T (c)i + β1T (c)i−1
+ β2T (c)i−2

+ · · · + βi Ir−1,

where βi (1 ≤ i ≤ r − 1) are the coefficients of yi in the characteristic polynomial of T (c): det(yIr−1 − T (c)) =

yr−1
+ β1 yr−2

+ · · · + βr−1. Since we have assumed A(x) ∈Mc, B is invertible. Then we obtain(
1 0
0 B−1

)
A(x)

(
1 0
0 B

)
=

(
∗ ∗

Eν τ ′

)
+ (x − c)

(
∗ ∗

∗ T

)
+ higher terms in (x − c),

where

τ ′
=


−β1 −β2 · · · −βr−1

1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

 , T ∈ Mr−1(C).

We define Eb1 and Eb0 by

Eb1c + Eb0 =
t (β1, . . . , βr−1), Eb1 = −

t (T11, T12, . . . , T1r−1) .

Consequently we obtain the matrix

g(x) =

(
1 0
0 B

)(
1 t Eb1 x +

t Eb0
0 1

)
,

which satisfies g(A(x)) ∈ Sc.
2: By expanding the relation g(S(x)) = S̃(x) in (x − c) and comparing the coefficient matrices of (x − c)0 and
(x − c)1, we see g(x) = Ir . �

4.3. Integrable structure of S∞

Now we set c = ∞. We study an explicit relation between S∞,P and Divg
eff(CP ), then give a description of the

vector field on S∞. These two results may be regarded as the counterparts of the studies on Beauville’s system by
Smirnov and Zeitlin [19] Section 4.1-2, and by Fu [10] respectively.
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Let P ∈ Vsm(r, d) be such that ∞ ∈ P1 is not a ramification point of π , and set S∞,P = S∞ ∩ MP . We study
the relation between S∞,P and Divg

eff(CP ) by applying the method of Sklyanin [17] (the separation of variables).
Let τ : Divg

eff(CP ) → J g
P be the Abel–Jacobi map. Its restriction τ |τ−1(J ′

P )
is injective, because the complete linear

system of L ∈ J ′

P is of dimension zero (cf. Lemma 2.5). By abuse of notation, we write τ−1 for the composition of

J ′

P

∼=
−→ τ−1(J ′

P ) ↪→ Divg
eff(CP ).

Our aim is to give an explicit description of the composition κ of

S∞,P
∼=

−→M∞,P/Gr
∼=

−→ J g
P \

 ⋃
q∈π−1(∞)

Θq

 ⊂ J ′

P
τ−1

−→ Divg
eff(CP ).

Unfortunately, our result is limited to a subset of S∞,P due to technical difficulties. Define

S ′

∞,P = {A(x) ∈ S∞,P | all roots of det D(A(x); x) are simple and belong to π(C0
P )}.

Note that det D(A(x); x) of A(x) ∈ S∞,P is of degree g by the definition of S∞,P .

Proposition 4.9. Let A(x) ∈ S ′

∞,P . Denote by x1, . . . , xg the simple roots of det D(A(x); x) = 0. Let Eν ∈ Cr−1 be
any vector satisfying

det(Eν, Eu(x), . . . , T (x)r−3
Eu(x)) 6≡ 0. (4.6)

With this Eν, define

yi :=
det(T (x)Eν, Eu(x), . . . , T (x)r−3

Eu(x))

det(Eν, Eu(x), . . . , T (x)r−3 Eu(x))

∣∣∣∣
x=xi

. (4.7)

(This is independent of the choice of Eν.) Then we have κ(A(x)) =
∑g

i=1(xi , yi ).

Proof. The assumption that xi (1 ≤ i ≤ g) is a simple root of det D(A(x); x) implies that the rank of D(A(x); xi ) is
r −2. By Lemma 4.3, there exists a unique eigenvector of t A(xi )whose first component is zero. Denote the eigenvalue
by αi . Then by Proposition 2.10, the invertible sheaf L corresponding to A(x) satisfies L ∈

⋂g
i=1 Θ(xi ,αi ). Because of

the injectivity of τ |τ−1(J ′
P )

mentioned above, we see κ(A(x)) = τ−1(L) =
∑g

i=1(xi , αi ). Thus what we have to show
is that yi = αi .

For simplicity, we show the case of i = 1. Since the eigenvalue α1 of A(x1) is also an eigenvalue of T (x1), there
exists an eigenvector Eµ′ of T (x1) of the eigenvalue α1. It is easy to show det( Eµ′, Eu(x1), . . . , T (x1)

r−3
Eu(x1)) 6= 0, and

we obtain

α1 =
det(T (x1) Eµ

′, Eu(x1), . . . , T (x1)
r−3

Eu(x1))

det( Eµ′, Eu(x1), . . . , T (x1)r−3 Eu(x1))
.

Let Eν ∈ Cr−1 be a vector satisfying (4.6). Then there exist rational functions β(x), β0(x) , . . ., βr−3(x) ∈ C(x) such
that

Eν = β(x) Eµ′
+

r−3∑
k=0

βk(x)T (x)
k
Eu(x).

Here β(x) 6≡ 0 by the assumption on Eν. Now it is immediate to check that y1 = α1. �

Next we describe the vector field on S∞ induced from (3.1), using the following lemma:

Lemma 4.10. Let X be a vector field on M∞ ' S∞ × Gr . The isomorphism Φ : M∞

∼
→ S∞ × Gr ; A(x) 7→

(S(x), g(x)) induces the decomposition of X as Φ∗ X = F + G, where F ∈ H0(S∞ × Gr , TS∞) and G ∈

H0(S∞ × Gr , T Gr ). Then

X (A(x)) = g (F(S(x), g(x)))− [g(x)−1G(S(x), g(x)), A(x)]. (4.8)

Here we identify Tg(x)Gr with LieGr , and TS(x)S∞ with the subspace of M(r, d) via the inclusion S∞ ↪→ M(r, d).
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The proof is left to the reader. The Hamiltonian vector field on S∞ becomes as follows:

Proposition 4.11. The projection of the vector field (3.1) onto S∞ is

F (p)a (A(x)) =
1

x − a
[A(a)p, A(x)] +

[(
0 t

Eγ p x +
t Eβ p

E0 C p

)
, A(x)

]
at A(x) ∈ S∞. (4.9)

Here ( Eγp, Eβp,C p) ∈ Cr−1
⊕ Cr−1

⊕ Mr−1(C) is a unique solution of

C p · Eν = (τ − vdIr−1) · Eh p,

Eν ·
t
Eγ p −[C p, τ ] = Eh p ·

t
Ewd+1,

(Eν ·
t Eβ p +Eud−2 ·

t
Eγ p −C pTd−1)1,i = (Eh p · (t Ewd +a t

Ewd+1)+ Jpτ)1,i , for 1 ≤ i ≤ r − 1,

(4.10)

where τ and Eν are defined in (4.5), and Eh p and Jp are

A(a)p
=

(
∗ ∗

Eh p Jp

)
. (4.11)

Proof. The equations (4.10) are obtained by solving (4.8) for F(S(x), g(x)) and G(S(x), g(x)) at X = Υ (p)
a and

g = Ir . Eq. (4.8) becomes

Υ (p)
a (A(x)) = F (p)a (A(x))− [G(p)

a (A(x)), A(x)], (4.12)

where F (p)a (A(x)) is of the form

F (p)a (A(x)) = xd+1
(

0 ∗

E0 O

)
+ xd

(
∗ ∗

E0 O

)
+ xd−1

(
∗ ∗

E0 ρ

)
+ lower terms in x .

Here ρ ∈ T (4.5), and G(p)
a (A(x)) ∈ Lie Gr is of the form

G(p)
a (A(x)) =

(
0 t

Eγ p x +
t Eβp

E0 C p

)
( Eγp, Eβp ∈ Cr−1,C p ∈ Mr−1(C)).

The matrix G(p)
a (A(x)) is determined as follows. In the LHS of (4.12), the (i, 1)-entries (2 ≤ i ≤ r) and (i, j)-entries

(2 ≤ i, j ≤ r) are

(vdIr−1 − τ) · Eh p xd−1
+ lower order in x,

Eh p ·
t
Ewd+1 xd

+

(
Eh p · (t Ewd +a t

Ewd+1)+ [Jp, τ ]
)

xd−1
+ lower order in x .

In the RHS of (4.12),the (i, 1)-entries (2 ≤ i ≤ r) and (i, j)-entries (2 ≤ i, j ≤ r) are

−C p · Eν xd−1
+ · · · ,

(Eν ·
t
Eγ p −[C p, τ ])x

d
+ (Eν ·

t Eβ p +Eud−2 ·
t
Eγ p −[C p, Td−1] + ρ)xd−1

+ · · · .

We obtain the Eqs. (4.10) for ( Eγp, Eβp,C p) by comparing the LHS and the RHS.
The solution to Eqs. (4.10) is unique since the first and second equations completely determine C p and Eγp and then

the third equation completely determines the value of Eβp. �

4.4. Examples

The case of r = 2: we have the space of representatives as

S∞ =

 A(x) =

(
v(x) w(x)
u(x) t (x)

)
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=

(
0 wd+1
0 0

)
xd+1

+

(
vd wd
0 0

)
xd

+

vd−1 wd−1
1 0

 xd−1
+ lower terms in x

 .
For P ∈ Vsm(r, d), the genus of the curve CP is d − 1. The isomorphism given in Proposition 4.9 becomes very
simple: xk (k = 1, . . . , d − 1) are the zeros of u(x) and yk = t (xk). The vector field on S∞ (4.9) becomes

F (1)a (A(x)) =

[
1

x − a
A(a)+ u(a)

(
0 (x + a − ud−2)wd+1 + wd
0 −vd

)
, A(x)

]
.

Let V = {P(x, y) ∈ V (2, d) | s1(x) ≡ 0}. The restriction ψ−1(V )∩ S∞ → V of our system ψ |S∞
: S∞ → V (2, d)

coincides with the even Mumford system introduced by Vanhaeche [21].
The case of r = 3: this is a new system. S∞ is written as

S∞ =

 A(x) =

 v(x) w(1)(x) w(2)(x)
u(1)(x) T (1,1)(x) T (1,2)(x)
u(2)(x) T (2,1)(x) T (2,2)(x)



=

0 w
(1)
d+1 w

(2)
d+1

0 0 0
0 0 0

 xd+1
+

vd w
(1)
d w

(2)
d

0 0 0
0 1 0

 xd
+

vd−1 w
(1)
d−1 w

(2)
d−1

1 0 0
0 T (2,1)d−1 T (2,2)d−1

 xd−1

+ lower terms in x

 .
For P ∈ Vsm(r, d), the genus g of CP is 3d − 2. The isomorphism given in Proposition 4.9 becomes as follows: xk
are the zeros of D(A(x)) (4.2) and yk (4.7) has two equivalent descriptions:

yk =
u(2)(x)T (1,1)(x)− u(1)(x)T (2,1)(x)

u(2)(x)

∣∣∣∣∣
x=xk

or
u(1)(x)T (2,2)(x)− u(2)(x)T (1,2)(x)

u(1)(x)

∣∣∣∣∣
x=xk

.

The vector field on S∞ is written as

F (p)a (A(x)) =

[
1

x − a
A(a)+

(
0 t

Eγ p x +
t Eβ p

0 C p

)
, A(x)

]
for p = 1, 2,

where

t
Eγ p x +

t Eβ p = h(1)p

(
(x + a − u(1)d−2)

t
Ewd+1 +

t
Ewd

)
+

t (h(2)p w
(2)
d+1(x + T (2,1)d−1 − u(1)d−2)+ (Jp)1,2 , h(2)p w

(2)
d+1T (2,2)d−1 )

C p = h(1)p

(
−vd 0

1 −vd

)
+ h(2)p

(
1 w

(2)
d+1

−vd −w
(1)
d+1

)
.

Here Jp and Eh p =

(
h(1)p

h(2)p

)
are given at (4.11).

Acknowledgement

The subsection on related works was included at the suggestion of the referee. The authors thank the referee for
this advice.

References
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